UNDERGRADUATE PROGRAM IN COMPUTER SCIENCE DEPARTMENT OF COMPUTER SCIENCE AND ELECTRONICS FACULTY OF MATHEMATICS AND NATURAL SCIENCES UNIVERSITAS GADJAH MADA

Module name	Parallel Systems and Programming		
Module level	Undergraduate		
Code	MII - 4217		
Courses (if	Parallel Systems and Programming		
applicable)			
Semester	Spring (Genap)		
Contact person	Lukman Heryawan, ST,MT		
Lecturer	Lukman Heryawan, ST,MT		
Language	Bahasa Indonesia		
Relation to	1. Undergraduate degree program, elective, 4 th or 6 th semester.		
curriculum	2. International undergraduate program, elective, 4 th or 6 th		
	semester.		
Type of teaching,	1. Undergraduate degree program: lectures, < 60 students,		
contact hours	2. International undergraduate program: lectures, < 30 students.		
Workload	1. Lectures: 3 x 50 = 150 minutes (2.5 hours) per week.		
	2. Exercises and Assignments: 3 x 60 = 180 minutes (3 hour	s) per	
	week.		
	3. Private study: 3 x 60 = 180 minutes (3 hours) per week.		
Credit points	3 credit points (sks).		
Requirements	A student must have attended at least 75% of the lectures to sit in		
according to the	the exams.		
examination			
regulations			
Recommended	Analysis of Algorithms and Complexity		
prerequisites		T	
Learning outcomes and their	After completing this module, a student is expected to:		
corresponding PLOs	LO1 Students are able to know and understand the	PLO3	
corresponding FLOS	concepts and terminology of parallel systems and applications in the real world.		
	LO2 Students are able to know and understand the terms of the parallel computing architecture of computers in general.	PLO3	

	100 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DI 63
	LO3 Students are able to know and understand the	PLO3
	architecture of the parallel computer memory.	
	LO4 Students are able to know and understand the parallel programming model and implementation.	PLO4
	programming moderand implementation.	
	LO5 Students are able to know and understand the design	PLO5
	of parallel programs that involve multiple distributed	
	variables such as data dependencies, synchronization, load	
	balancing, and granularity.	
	LO6 Students are able to independently for further study	PLO6
	(self-development) and to think logically and analytically to	
	solve problems encountered in a professional manner,	
	especially in the area of parallel programming.	
	LO7 Become capable and competent to solve a problem	PLO5
	with the parallel programming.	
Content	This lecture begins with a brief overview, including concepts	
	and terminology associated with parallel computing systems	
	Topics of parallel memory architectures and parallel	
	programming model was explored. This topic is followed by	a
	discussion on a number of issues related to the design of	
	parallel programs. The lecture concludes with some example	25
	on how to parallelize simple sequential program.	
	on now to parametrze simple sequential program.	
Study and	1. Exercises.	
examination	2. Mid-term examination.	
requirements and	3. Final examination.	
forms of		
examination		
Media employed	LCD, whiteboard, handouts, and websites.	
Assessments and	LO1 : Problem 1 in midterm (10%), and exercise 1 (5%).	
Evaluation	LO2 : Problem 2 & 3 in midterm (10%), and exercise 2 (5%).	
	LO3 : Problem 4 in midterm (5%), and problem 1 in final example (100)	n
	(10%).	
	LO4 : Problem 2 in final exam (10%), and exercise 5 (5%).	
	LO5 : Problem 3 in final exam (7.5%), exercise 6 (2.5%), and	
	exercise 7 (5%).	
	LO6 : Problem 4 in final exam (7.5%), and exercise 8 (2.5%).	
Reading List	LO7: Problem 5 & 6 in final exam (10%), and exercise 9 (5%).	
Reading List	W1 : Ivo Adan and Jacques Resing, Queueing Systems,	

Eindhoven University of Technology, 2015.

W2: Albrecth, M.C., and Az, P.E., Introduction to Discrete Event Simulation, 2010.

A1: Law, A.M., and Kelton, W.D., Simulation Modeling and Analysis, 2nd Edition, McGraw-Hill, 1991.