

UNIVERSITAS GADJAH MADA Faculty of Mathematics and Natural Sciences

Department of Computer Science and Electronics

Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 546194 Email: dep-ike.mipa@ugm.ac.id Website: http://dcse.fmipa.ugm.ac.id

Bachelor in Electronics and Instrumentation

Telp : +62 274 546194 : kaprodi-s1-elins.mipa@ugm.ac.id Email Website : <u>http://dcse.ugm.ac.id/</u>

MODULE HANDBOOK

Module name	Experiment on Advanced Robotics
Module level, if applicable	Undergraduate
Code, if applicable	MII 3315
Courses, if applicable	Advanced Robotics – MII 3310
Semester(s) in which the	Odd Semester
module is taught	
Person responsible for the	Ika Candradewi, S.Si., M.Cs.
module	
Lecturer(s)	Ika Candradewi, S.Si., M.Cs.
	Nia Gella Augoestien, S.Si., M.Cs.
Language	English
	Bahasa Indonesia
Relation to curriculum	1. Undergraduate degree program, elective, 6th semester.
	2. International undergraduate program, elective, 6th semester.
Teaching methods	1. Undergraduate degree program delivered using lectures and practicum
	instruction with students less than 30.
	2. International undergraduate degree program delivered using lectures
	and instruction with students less than 30.
Workload (incl. contact	1. Lectures: 1 x 100 = 100 minutes per week.
hours, self-study hours)	2. Exercises and Assignments: 1 x 50 = 50 minutes per week.
	3. Self-study: 1 x 50 = 50 minutes per week.
Credit points	1 Credit Points
Requirements according to	A student must have attended at least 75% of the lectures to sit in the
the examination	exams.
regulations	
Required and	Students must take Advanced Robotics – MII 3310 course
recommended	
prerequisites for joining	
the module	
Learning outcomes and	After completing this module, a student is expected to:
their corresponding PLOs	CO1. Students are able to implement inverse kinematics and able to
	program arm Robot / Manipulator robots [CPL 3]
	CO2. Students are able to program flying robots using Teloo [CPL 3]
	CO3. Students are able to program wheeled robot using python on ROS for
	SLAm and path planning problem [CPL 4]
	CO4. Students are able to design and implement programming on Robot to
	solve problems for specific application[CPL 5]

		PLO		CO1		:02	CO3	CO4		
	Program	PLC	01							
	Learning	PLC)2							
	Outcome	PLC)3	V		٧	V			
	(PLO)	PLC	04	V		٧	V			
		PLC)5					√		
Content	1. Programming Control Robot Manipulator Arm									
	2. Programming Flying Robot and Implementation of Control Flying									
	Robots									
	3. Advanced SLAM and Path Planing in Wheeled Robot									
Study and examination	The evaluation is done in three forms, namely:									
requirements and	1. Final exam									
examination forms	2. Case Study									
	3. Ten group assignments are to be completed within a specific timeframe.									
	And Assessment is done using a rubric to measure student									
	understanding related to the target and class rank.									
Media employed	e-learning Platform (ELOK), projector, whiteboard, and presentation.									
	Robotic Turtlebot3 Kit, Ubuntu OS with ROS, Gazebo Simulation Software									
Assessments and										
evaluation	Ту	ре	Percenta	age	CO1	CO2	CO3	CO4		
	Final Exam	-Project	30%					V		
	Results/Case Study									
	Results/PE	L								
	Results*)									
	Task (Skill-	based	10%		۷	V	V	V		
	Assessmer									
	Assignmer									
	Experimen	t Renort	20%		v					
		t hepoit	20/0		v					
	Case Study	/	20 %		٧	V				
	Final Exam	_	20 %	_				V		
	Theoritical	& Analisis								
	Total		100							
Reading list	Main Refer	ences :								
	1. KUS KODOT Programming, A Handbook is written by TurtleBot3									
	programming-book-for-free/51 2. Materi Praktikum Robotika Lanjut									
Created date	· lanuary 12 nd 2022									
	•				Janua	.,				
Revision date	:									