

UNIVERSITAS GADJAH MADA

Faculty of Mathematics and Natural Sciences

Department of Computer Science and Electronics Sekip Utara Bulaksumur Yogyakarta 55281 Telp: +62 274 546194 Email: dep-ike.mipa@ugm.ac.id Website: http://dcse.fmipa.ugm.ac.id

Bachelor in Electronics and Instrumentation

Telp Email : +62 274 546194

: kaprodi-s1-elins.mipa@ugm.ac.id

Website : http://dcse.ugm.ac.id/

MODULE HANDBOOK

Module name	: Microcontroller (IUP)
Module level, if	: Undergraduate
applicable	
Code, if applicable	: MII1307
Courses, if applicable	
Semester(s) in which	
the module is taught	
Person responsible for	: Agfianto Eko Putra, Dr., M.Si.
the module	
Lecturer(s)	: Agfianto Eko Putra, Dr., M.Si.
Language	: English
Relation to curriculum	: Elective Course
Teaching methods	: Student Centered Learning
Workload (incl.	: 42 contact hours, 42 self-study hours
contact hours, self-	
study hours)	
Credit points	:3
Requirements	: Minimum attendance at lectures is 75% (according to UGM regulation). Final
according to the	score is evaluated based on assignments (20%), mid semester exam (40%), and
examination	end semester exam (40%).
regulations	
Required and	: basic electronics and programming
recommended	
prerequisites for	
joining the module	
Learning outcomes	After completing this module, a student is expected to:
and their	CO1. Explains microcontrollers in general and ESP32 microcontrollers in
corresponding PLOs	particular, including the ESP32 inputs outputs, PWM, analogue inputs, interrupt timer and deep sleep feature
	CO2. Understand and can program the basic concept of ESP32 features, including
	, ,
	ESP32 Hall sensor, touch sensor, I2C, flash memory and dual-core
	capability, also interfacing with OLED display.
	CO3. Understand the basic concepts of interfacing and programming ESP32 with
	sensors, including DHT11/DHT22, DS18B20, BME280, BMP180 and MPU6050.
	CO4. Understand the basic concepts of ESP32 and protocols in the Internet of
	Things (IoT), including HTTP, MQTT and BLE.
	CO.5 Understand the basic concepts of some applications using ESP32

	PLO	CO1	CO2	CO3	CO4	CO5
Program	PLO1					
Learning	PLO2	٧	٧	٧	٧	
Outcome	PLO3	٧	٧	٧	٧	
(PLO)	PLO4					٧
	PLO5					

Content

- 1. Introduction to Microcontroller and ESP32
 - a. Introduction to Microcontrollers and ESP32
 - b. Arduino IDE platform software
 - c. ESP32 I/O
 - d. ESP32 Pulse Width Modulation
 - e. ESP32 analogue input
 - f. ESP32 interrupt timer
 - g. ESP32 Deep Sleep
- 2. ESP32 features
 - a. ESP32 Hall Sensors
 - b. ESP32 touch sensor
 - c. I2C serial communication on ESP32
 - d. ESP32 Flash Memory
 - e. ESP32 Dual Core
- 3. Operate important sensors
 - a. DHT11/DHT22 temperature and humidity sensors
 - b. DS18B20 temperature sensor
 - c. MPU-6050 Accelerometer Gyroscope sensor
 - d. Mini PIR sensor AM312
 - e. BMP180 Barometric sensor
 - f. ESP32 MicroSD Card
- 4. Internet of Things concept and protocols
 - a. IoT Introduction
 - b. ESP32 Wi-Fi
 - c. ESP32 Web Server
 - d. ESP32 MQTT
 - e. ESP32 Bluetooth
- 5. ESP32 Application (case study)
 - a. DHT Web Server
 - b. DS18B20 Web Server
 - c. RGB LED Web Server
 - d. MPU-6050 Web Server
 - e. Telegram Control Outputs
 - f. Telegram Sensor Readings
 - g. Telegram Detect Motion

Study and examination requirements and

examination forms									
Media employed	: slides, discussion, online or offline meeting								
Assessments and									
evaluation	Туре	Percentage	CO1	CO2	CO3	CO4	CO5		
	Assignments/Quiz	20	٧	٧	٧	٧	٧		
	Midterm exam	40	٧	٧	٧				
	Final exam	40				V	٧		
	Total	100							
Reading list	[1] Santos, Rui, 2023 <i>IDE</i> , Random Ner <u>esp32/</u>)	-	•						

Created date : January 15th, 2023

Revision date : January 15th, 2023